Министерство образования Пермского края

Физика

Задания муниципального этапа всероссийской олимпиады школьников
 в Пермском крае

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ МУНИЦИПАЛЬНОГО ЭТАПА ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ
 2013/2014 учебного года

1. Во II (муниципальном) этапе региональной олимпиады школьников по физике участвуют учащиеся $4-х$ групп: 8 классы, 9 классы, 10 классы и 11 классы образовательных учреждений.
2. Задания муниципального этапа выполняются учащимися 8 классов $\underline{2}$ часа 30 минут.
3. Задания муниципального этапа выполняются учащимися 9-11 классов $\mathbf{3}$ часа 30 минут
4. Задания II (муниципального) этапа олимпиады включают 4 задачи для 8 класса и по 5 задач для учащимися 9-10-11 классов. Каждая задача оценивается в 10 баллов.

Таким образом, максимальное количество баллов - 40 у 8 класса, и максимальное количество баллов - 50 у 9-10-11 классов.

Условия задач

8 класс

Задача 1. Движение лодки.

Моторная лодка плывет из пункта А в пункт B , находящийся вниз по течению реки, и сразу возвращается обратно. Скорость реки равна u. Скорость лодки в неподвижной воде $-v$. Какова средняя скорость лодки на всем пути? (10 баллов)

Задача 2. Ртуть, масло и вода

В U-образную трубку налили ртуть. Затем в правое колено добавили масло, а в левое - воду. В результате оказалось, что верхние уровни воды и масла совпадают, а нижние - отличаются на $\Delta H=5$ мм. Какой столб выше: воды или масла? Вычислите высоту столба масла. Плотность ртути $\rho_{\text {рт }}=13600 \kappa г / \mathrm{m}^{3}$, плотность масла $\rho_{\mathrm{m}}=900$ кг $/ \mathrm{m}^{3}$, плотность воды $\rho_{\mathrm{B}}=1000$ кг $/ \mathrm{m}^{3}$. (10 баллов)

Задача 3. Испарение воды.

В калориметр, содержащий $V=2,8$ л воды при $t_{l}=20^{\circ} \mathrm{C}$, помещают стальной брусок массой $m_{2}=3$ кг и температурой $t_{2}=460^{\circ} \mathrm{C}$. Вода нагревается до $\theta=60^{\circ} \mathrm{C}$ и часть ее обращается в пар. Найти массу Δm воды, обратившейся в пар. Удельная теплоемкость воды и стали: $c_{1}=4,2$ кДж/кг•К, $c_{2}=0,46$ кДж/кг•К, удельная теплота парообразования воды $r=2,25$ МДж/кг. (10 баллов)

Задача 4. Линейка на столе.

Линейку, длина которой $\ell=70 \mathrm{~cm}$, кладут на край стола (перпендикулярно краю) так, что за край выступает $\ell_{1}=20 \mathrm{~cm}$. На конец линейки, лежащий на столе, ставят гирьку $m=25$ г. Какой максимальной массы m_{x} гирьку можно поставить на выступающий конец линейки, чтобы система находилась в равновесии? Масса линейки $M=50 г$. (10 баллов)

9 класс

Задача 1. Вагоны электрички.

Стоявший у начала третьего вагона электрички пассажир определил, что начавший двигаться равноускоренно вагон прошел мимо него за $t_{1}=5 \mathrm{c}$, а часть электрички, начиная с третьего вагона, - за $t_{2}=15,8$ с. Найти число вагонов N в электричке и время Δt, за которое прошел мимо пассажира последний вагон. (10 баллов)

Задача 2. Тяжелая палочка.

С какой силой давит тяжелая палочка на дно водоема, если жестко связанный с палочкой пустотелый шарик радиуса r погрузился в жидкость наполовину? Плотность жидкости ρ, длина палочки ℓ. ($\left.V_{\text {uара }}=\frac{4}{3} \pi r^{3}\right)(\mathbf{1 0}$ баллов $)$

Задача 3. Проволочный квадрат.

Из однородной проволоки изготовлен квадрат с одной диагональю, вершинами которой он включен в цепь. Общее сопротивление этого участка цепи R $=1,4$ Ом. Найти сопротивление r стороны квадрата. (10 баллов)

Задача 4. Испарение воды.

В калориметр, содержащий $V=2,8$ л воды при $t_{1}=20^{\circ} \mathrm{C}$, помещают стальной брусок массой $m_{2}=3$ кг и температурой $t_{2}=460^{\circ} \mathrm{C}$. Вода нагревается до $\theta=60^{\circ} \mathrm{C}$ и часть ее обращается в пар. Найти массу Δm воды, обратившейся в пар. Удельная теплоемкость воды и стали: $c_{1}=4,2$ кДж/кг•К, $c_{2}=0,46$ кДж/кг•К, удельная теплота парообразования воды $r=2,25$ МДж/кг. (10 баллов)

Задача 5. Увеличение линзы.

Найти фокусное расстояние F линзы и расстояния a между предметом и линзой, если на расстоянии $L=6$ см от предмета до экрана его увеличение $\Gamma=5$.
(10 баллов)

10 класс

Задача 1. Движение по окружности

Тело движется по окружности, длина которой $\mathrm{L}=100$ м. В начальный момент времени оно находилось в некоторой точке О. Далее скорость точки меняется по закону $v=2(5-t) \mathrm{m} / \mathrm{c}$. Определите через какой промежуток времени тело снова окажется в точке O а)в первый раз после начала движения, б) сделав n оборотов. (10 баллов)

Задача 2. Лед и вода

В теплоизолированный цилиндрический сосуд поместили кусок льда массой M при $t=0^{\circ} \mathrm{C}$ и прочно прикрепили ко дну. Затем залили этот лёд водой такой же массой M. Вода полностью покрыла лёд и достигла уровня $H=20$ см. Определите, какова была температура воды, если после установления теплового равновесия уровень воды в сосуде опустился на $h=0,4$ см. Плотности льда и воды равны 920 и 1000 кг/м² соответственно. Удельная теплота плавления льда $\lambda=330$ кДж/кг, удельная теплоемкость воды $C=4200$ Дж/кг•К. (10 баллов)

Задача 3. Электрическая цепь

В электрической цепи, изображенной на рис. $1, U=4,2 \mathrm{~B}, R_{1}=5$ кОм, $R_{2}=R_{3}=4$ кОм, $R_{4}=6$ кОм. Найдите силу тока $I_{\mathrm{A} 1}$, текущего через амперметр при разомкнутом ключе $К$, и $I_{\mathrm{A} 2}$, при замкнутом ключе К. Амперметр считайте идеальным. (10 баллов)

Задача 4. Два бруска

В системе, показанной на рис.2, масса каждого бруска $m=1$ кг, жесткость пружины $k=20 \mathrm{H} / \mathrm{m}$, коэффициент трения между бруском и плоскостью $\mu=0,4$. Массы блока и пружины пренебрежимо малы. Система пришла в движение с нулевой начальной скоростью при недеформированной пружине. Найдите максимальную скорость брусков. При вычислениях принять

Рис. 2 ускорение свободного падения $g=10 \mathrm{~m} / \mathrm{c}^{2}$. (10 баллов)

Задача 5. Клин и два тела

На вершине клина массой M с высотой h и углами α и β при основании удерживаются два небольших тела одинаковой массой m (см. рис.3). Клин стоит на гладкой горизонтальной плоскости. После освобождения тела соскальзывают с клина в разные стороны и застревают внизу в специальных

Рис. 3 улавливателях, установленных в конце каждой из наклонных плоскостей клина. В каком направлении и на какое расстояние сдвинется клин после соскальзывания тел? (10 баллов)

11 класс

Задача 1. Движение по окружности

Тело движется по окружности радиуса $R=10$ м. В начальный момент времени оно находилось в некоторой точке О. Далее скорость точки меняется по закону $v=\left(18 t-9 t^{2}+t^{3}\right)$ м/с. Определите через какой промежуток времени тело снова окажется в точке О. (10 баллов)

Задача 2. Система на столе.

На краю стола укреплен блок, через который перекинута невесомая нерастяжимая нить. Нить связывает два груза (см. рис.) массами т и $\mathrm{M}=4 \mathrm{~m}$. Коэффициент трения между столом и грузом М равен $\mu=0.5$. Груз m отводят в сторону и отпускают без
 толчка. На какой минимальный угол α от вертикали надо отвести груз m , чтобы при его движении груз М сдвинулся с места? (10 баллов)

Задача 3. Процесс с идеальным газом.

Над идеальным газом, проводят процесс, при котором плотность газа линейно убывает с температурой (см. рис.). Молярная масса газа - μ. Каково максимальное давление газа в этом процессе. (10 баллов)

В закрытом теплоизолированном сосуде находится озон $\left(\mathrm{O}_{3}\right)$ при температуре $t_{1}=527^{\circ} \mathrm{C}$. Через некоторое время озон полностью превращается в кислород $\left(\mathrm{O}_{2}\right)$. Определите, во сколько раз возрастет при этом давление в сосуде, если на образование одного моля озона из кислорода нужно затратить $q=141$ кДж. Теплоемкость одного моля кислорода при постоянном объеме считать равной $C_{\mathrm{v}}=21$ Дж/К моль. (10 баллов)

Задача 5 Выделение тепла в цепи.

В схеме (см. рисунок) первоначально ключ К в течение большого промежутка времени замкнут. Какое количество тепла выделится в цепи после размыкания ключа К? Электроемкости конденсаторов - C_{1} и C_{2}. Сопротивление резистора R. ЭДС источника равна \mathcal{E}. Внутреннее сопротивление источника r, сопротивление соединительных проводов равно нулю. (10 баллов)

